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Abstract 

This paper is devoted to the calculation of the diffuse- 
scattering picture and its temperature evolution in 
cubic perovskites, the loose packing of which at high 
temperatures is connected with the existence of two- 
dimensional movable objects. The freezing of these 
objects as temperature decreases leads to structural 
phase transitions in consecutive order to 
pseudotetragonal, pseudoorthorhomic and pseudo- 
rhombohedral,  accompanied by the vanishing of 
relrod families of diffuse scattering and by the 
appearence of diffuse (superstructure) reflections. 
Depending upon the values of the ionic radii crystals 
with different numbers of phase transitions are pos- 
sible. The temperature dependence of the order par- 
ameters, lattice constants, superstructure reflections, 
and tilting I, antitilting) angles are calculated and com- 
pared with experimental data. 

Introduction 

The present paper immediately follows parts I, II and 
III (Kassan-Ogly & Naish, 1986a, b, c). 

In II we constructed the diagram (Fig. 8 in II) for 
the existence and stability of A B X 3  compounds based 
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upon the ionic radii, and perovskites were classified 
as loose-packing types (I), (II) and (III). In the 
present paper we shall deal with just the perovskites 
from region (II) of the diagram (tilting). 

In such perovskites unit-cell sizes are determined 
by the contact of B and X ions (Fig. 3 in II). Here 
B ions are immobile, A ions have three degrees of 
freedom, and each X ion has two degrees of freedom 
and, depending on the ionic-radii ratio, is able to 
meet in its motion either an X ion from the neighbour- 
ing cell or A ions from its own cell. This type of loose 
packing determines, as we shall see later on, the 
peculiarities of diffuse scattering in perovskites from 
the tilting region. 

The majority of cubic perovskites are found just in 
this region [see, for example, Alexandrov, An.istratov, 
Besnosikov & Fedoseeva ( 19 81 ) and Fesenko (1972) ]. 
However, X-ray patterns in the mono-Laue method 
have been obtained for only two crystals: KMnF3 
(Comes, Denoyer, Deschamps & Lambert, 1971) and 
NaNbO3 (Denoyer, Comes & Lambert, 1971; Ishida 
& Honjo, 1973). For only one of these (NaNbO3) has 
the temperature evolution (although fragmentary) of 
diffuse scattering been traced, as was done by Comes, 
Lamber & Guinier (1970) for KNbO3 (a crystal of 
shifting type). The appearance of three families of 
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diffuse spots created by the intersection of Ewald's 
sphere with three families of mutually perpendicular 
equidistant 'shining' relrods is the distinguishing 
feature of these X-ray patterns. In addition, the 
specific diffuse streaks traced by the 'shining' replanes 
are also observed in NaNbO3. 

In the present paper, using the ideas of parts I, II 
and III, we shall describe the whole picture and the 
temperature evolution of diffuse scattering in perov- 
skites from the tilting region as well as the temperature 
dependence of the lattice constants and the tilting 
angles. As one will see later on the mechanism and 
types of phase transitions occurring in these crystals 
differ substantially from those in shifting perovskites. 
This will necessarily require a discussion of some 
traditional concepts. 

T i l t i n g  m o d e l  

In the literature devoted to cubic perovskites the 
concept 'tilting' is used very often and is often called 
'octahedra rotation' but various authors retain the 
meaning with some variations. For example, some 
authors imply that the octahedra are rigid, others 
imply they are deformable, some consider only pure 
rotation, others consider rotation accompanied by 
inclination of the octahedra, and so on [see, for 
example, Alexandrov et al. (1981), Megaw (1973), 
Lines & Glass (1977)]. M011er (1959) was apparently 
the first to advance a 'tilting' model (even two different 
models). Later on this was extensively developed by 
Rousseau, Gesland, Juillard, Nouet, Zarembowitch 
& Zarembowitch (1975), Rousseau (1979), Bulou, 
Ridou, Rousseau & Nouet (1980), Bulou, Nouet, 
Hewat & Sharer (1980) and Ridou, Rousseau & 
Bouillot (1981). Here we develop this model.* 

Let us formulate the rigorous notions: paratilting, 
tilting and antitilting. Fig. 1 shows the xy plane nor- 
mal to the z axis and crossing the centres of the unit 
cells of perovskite. Solid lines correspond to the inter- 
section of this plane and the side faces of the unit 
cells, dots are the centres of squares - B-ion positions, 

* The 'tilting' problem from the viewpoint of lattice dynamics 
was considered by Stirling (1972), Boyer & Hardy (1981), and 
Flocken, Guenther, Hardy & Boyer (1985). 

Fig. 1. z paratilting in one plane. 

dots o n  lines - X-ion equilibrium positions, light 
arrows correspond to the positions of all X ions in 
one state (configuration), dark arrows - the other 
state. The synchronous oscillations of all X ions from 
one state to another and the same oscillations in all 
the remaining equivalent xy planes occurring without 
any correlation between planes will be called paratilt- 
ing along the z axis or simply z-paratilting. These 
oscillations occurring in different planes in phase will 
be called z-tilting and oscillations in neighbouring 
planes in antiphase will be called z-antitilting. 

It should be noted that the X-ion octahedra in 
z-paratilting are not rigid, they are incessantly con- 
tracting and stretching in a plane normal to the z axis 
keeping their size along the z axis. Nevertheless there 
are rigid movable two-dimensional objects. In this 
case there are four planar sublattices in the xy plane 
(the ions belonging to one of these sublattices are 
marked by '1' in Fig. 2). Owing to cubic symmetry 
similar considerations are valid for the x and y axes 
so that it is intuitively clear that paratilting, tilting 
and antitilting in different directions are independent 
and equal in value. 

Henceforth, as in part III, we first idealize the 
sublattices assuming them to be rigid and infinite, 
oscillating at high temperatures and freezing as tem- 
perature decreases with displacement (spontaneous 
tilting) relative to their equilibrium positions (frozen 
optical soft phonon). Secondly, we introduce interac- 
tion parameters between oscillations in neighbouring 
layers assuming (from cubic symmetry) all three inter- 
action parameters J", JY, j z  to be equal, positive in 
the tilting case and negative in the antitilting case. 
Thirdly, from simple geometrical considerations of 
ion displacements during freezing we introduce coup- 
ling parameters between the amplitudes of the sublat- 
tice oscillations and the structural distortions of a 
crystal. Fourthly we describe the sublattice oscilla- 
tions in a symmetrical double-well potential approxi- 
mately using the Ising model, precisely, by three 
mutually perpendicular one-dimensional Ising 
models (one-dimensionality of the model is the con- 
sequence of the two-dimensionality of rigid objects 
- see part I). 

2 

i ° ~z 

Fig. 2. Degrees of freedom of the X ion and their participation 
in tiltings of different orientations. 
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Problem formulation 

The elastic X-ray scattering intensity has the form: 

1 
I(~t) = - ~  ~'~.fnf*,exp[-ix(Rn-R,,,)], (1) 

t in '  

where N is the number of atoms, f ,  the X-ray form 
factor, x the scattering vector, and Rn the radius 
vector of the ion n. 

In our model all A and B atoms are immobile 
(despite the fact that the A ion has three degrees of 
freedom, its motion does not contribute to the con- 
certed motion of rigid extended objects and the 
individual motions of the A ions are of no interest 
to us since they give only the diffuse background), 
and each X ion is able to occupy four positions which 
are symmetrical with respect to a face centre so that 
each X ion participates in two paratiltings not leaving 
its own face. For example, X ion 3 in Fig. 2 is 
oscillating in the xy plane in the x direction participat- 
ing in y-paratilting and at the same time is oscillating 
in the y direction participating in x-paratilting. 

In so far as the interaction time of a separate X-ray 
quantum with a crystal is less than the time during 
which X ions change their positions so the scattering 
intensity would be obtained as an ensemble of 
elementary scattering acts on all possible crystal 
configurations. 

To derive the initial formula for the scattering 
intensity we make use of formula (2) from paper III, 
valid for the general case when each ion can occupy 
two positions participating in various oscillations: 

1 
I(~) =-~--~ ~, ~, f~f* exp [ - i~(Rnl-Rn,r)  ] 

nn' ll' 

x ~ Po, exp [ -  ix(A~',o'~,- A:,rO-:,r) ]. 
{,r} 

(2) 

In our model of three paratiltings formula (2) adopts 
the form: 

I ( x ) =  ~ ~ f l f*  exp [-i~(R,,t-R,,,,,)] 
l~ln' 

x ~ exp {-i~[(A~to 'X- A~,ro'X,) 
{~,} 

y y y y z z z "[- ( AnlOry - An,l, Ory, ) -[- ( AnlO" z -- An,l, Orz,) ]} 

x exp ( - / 3 ~ ) }  x ~ exp ( - / 3~ )  
{,r} 

(3) 

where: n is the joint index (x, y, z) running over all 
unit cells of a crystal; the lower indices x =  
{0, 1, 2 , . . .  Nx}, y={O, 1,2, . . .Ny},  z={0,  1, 
2, . . .  Nz} are the three-dimensional coordinates of 
the cell centres; I is the ion number within a cell; the 
upper indices of magnitudes A, tr and J merely denote 
a type (orientation) of paratilting; N is the number 
of unit cells; L = 5 (the number of ions in the perov- 
skite cell); Rnt = Rn +rt, where Rn is the radius vector 

of the cell centre, and rt the radius vector of the 
equilibrium state of ion I in a cell; A:t is the displace- 
ment vector of ion nl at its participation in a paratilt- 
ing; A~ is the same for all cells and is the displacement 
amplitude (modulus of the A:t vector) of ion l at its 
participation in a-paratilting; or is an operator accept- 
ing values of +1 and -1  at random. The operator try,, 
for example, determines one of two states (light or 
dark arrows in Fig. 1) in which all X ions in a plane 
crossing the centres of cells with number x' are found. 

is the Hamiltonian of our model: 

E i '~ j  o~ ot ot tx ~ - "  - V  Aijori jAi+, , jOri+l ,  j 

E . . . .  ] + a i j o ' i j / ~ i , j + l O ' i , j +  1 • 
0 

(4) 

Quite similarly to formulas (9) of part III one has: 

j~ V j r  V = AX X+,, A" ,÷ , ,  

(5) 
j z _  V 

where, for example, A z and A z~+ 1 are the displacement 
amplitudes of X ions found beneath one another in 
neighbouring xy planes, and J'~ is 'the exchange' 
interaction parameter between elementary paratilt- 
ings. We take into account, for the sake of simplicity, 
only the interactions between nearest planes. V in 
formula (5), as against formula (5) in part III, has a 
far simpler structure since ions of only one species 
(X) are involved in tilting. Finally, we do not use the 
mean-field approximation since the Ising model here 
is one-dimensional for which the exact solution was 
obtained in part I. 

Calculation of the diffuse-scattering picture 

For the first stage on using formula (3) let us take 
the sum over +1 and -1  values of all tr operators. 
For this purpose we are able to use the mathematical 
scheme developed in part I. More precisely, we must 
use the procedure for the exact solution of the scatter- 
ing problem in the one-dimensional Ising model three 
times. After rather cumbersome calculations we 
obtain: 

1 
I (x)  =~---~ ~ t~r f t f*  exp [-ig(Rnl-Rn,l,)] 

x {cos xA~, cos xA x, r 

+ axe, sin xAXt sin xA.,rx 

x [(1 - t a n h  2 JX)/(1-2 tanh jx cos xXa 

+ tanh 2 jx)]} 

x {cos ~Ar, I cos ~A ~,r 
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+ ~yy, sin gAYt sin gAY,r 

x [(1 - t a n h  2 J Y ) / ( 1 - 2  tanh JY cos xYa 

+ tanh 2 JY) ]} 

x {cos xA:z cos xA~,,r 

+ 8=, sin gAzl sin zA z 11'1' 

x [(1 - t a n h  2 J Z ) / ( 1 - 2  tanh J~ cos uZa 

+tanh  2 JZ)]}. (6) 

The factor before the square brackets in (6) is the 
three-dimensional 8 function. On multiplying the 
three brackets in (6) one obtains eight terms of three 
types: the first term without any Kronecker's 8 sym- 
bols describes Bragg reflections in relspace; three 
terms of the same type with one ~ symbol describe 
the diffuse shining relrods (Kroneker's 8 symbol 
reduces the dimensionality of the three-dimensional 

function to two dimensions); three other terms with 
two 8 symbols correspond to the diffuse shining 
replanes (one-dimensional 8 function); the last term 
with three 8 symbols corresponds to the continuous 
background in relspace (no 8 functions). Let us intro- 
duce for convenience the notation of all eight terms: 

I ( x ) =  Isr(X)+[IX(x)+ IY(x)+ lZ(x)] 

+ [I~Y(x) + IY:(x) + IZX(x)] + Ibg(X). (7) 

For the further analysis we shall need the ultimate 
expressions for vectors A~z and rt which can be easily 
obtained from Figs. 1 and 2: 

A,~2 = (00A ~') exp 

Ax3 = --(0AX0) exp 

AYl = -(OOA y) exp 

AY 3 = (AY00)  exp 

AZl = (0  A zO) exp 

A,~2 = -(A~00) exp 

[-i(Tr/a)(Ry+ Rz)], 

[-i(Tr/a)(Ry+ Rz)], 

[-i(~r/a)(Rx+ Rz)], 

[-i(Tr/a)(Rx+ Ry)], 

[-i(~r/a)(Rx+ Ry)], 

[-i(Tr/a)(Rx+ Ry)], 

AXl = AY 2 = An3 ~--- A : 4  = A : 5  = 0, 

a a 
ri =7 (100). r2=7 (010), 

r4=0,  

(8) 

(9) 

a 

r3 =7 (001). 
(10) a 

r ,=7 ( l l l ) .  

fl =f2=fs=fx, f4=fn, fs=fA • (11) 

Rx, Ry and R= are the coordinates of the cell centres. 
Let us consider the expression for the intensity of 

the Bragg reflections: 

1 
IB,(X) =-~ ~ Eu, j~fi*' exp [- i '(Rn/-Rn,r)] 

x 
x cos xA~t cos xA . ' r  cos ~A~z 

x cos xAY,r cos xA,~t cos xA,~,r. (12) 

Substituting (8)-(11) into (12) one obtains: 

1 ~-~.exp [ - i ~ ( R n - R w ) ]  IBr(It) = ' N  nn' 

1 ~--, j~f ,  exp [ - i ~ ( r t - r r ) ]  X--L 11' 

x cos xA~' cos ~AT, cos ~A~' 

x cos xA~ cos xA~ cos xAl~,, (13) 

where the notations A~' differ from the corresponding 
notations A~l in (8) by the absence of exponential 
factors. 

The first factor in (13) 

1 
~ - - ' e x p [ - i ~ ( R . - R w ) ] = ~  -'. 8 ( x - b )  (14) 

N nil' b 

merely determines the positions of the perovskite 
Bragg reflections and the remaining factors in (13) 
correspond to the perovskite structural factor modu- 
lated by typical Bragg reducing factors of cos xA type 
(see part I) so that in the particular limiting case A -- 0 
the modulation factor becomes equal to unity, i.e. the 
modulation vanishes. 

Let us now consider the expression for the intensity 
of the diffuse background Ibg(X). Using only the 
relations (9) it is easy to show that this expression is 
precisely equal to zero. In other words the diffuse 
background is absent. This fact is not surprising since 
in the accepted model no single ion possesses three 
degrees of freedom. It should be noted that in the 
perovskite KNbO3 the diffuse background was pres- 
ent and its intensity was determined solely by the 
niobium atoms that did possess three degrees of free- 
dom (see part III). 

Let us now consider the diffuse shining replanes, 
for example, (110): 

1 
= T# E E/,f,*, nn' 11' 

x exp [ -  ht(R.! - I..r)] 
x cos ~A~l cos ~A~,r sin xAX~s 

x sin xA~,r sin xA~i sin xAY,r 

X [(1 - t a n h  2 JX)/(1-2 tanh jx cos xXa 

+ tanh 2 jx) 

x (1 - t a n h  2 JY)/(1 - 2  tanh JY cos xYa 

+tanh  2 JY)]. 

Substituting (8)-(11) into (15) one obtains: 

1 
IXr (x) =-~ ~,=, exp [-ix~( Rz - gz,)] 

1 :g x 3fxf* sin 2 U xAy sin 2 ~¢ yAx 

(15) 
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x [(1 - t a n h  2 J X ) / ( 1 - 2  tanh jx cos xXa 
+tanh  2 J~)] 

x [(1 - t a n h  2 . /Y)/ (1-2  tanh JY cos xYa 

+tanh  2 JY)]. (16) 

The first factor in (16), 

1_~ ~-,exp[_inE(R_R~,)]=~b~ 8(xZ_bZ) ' (17) 
Nz zz' 

determines the positions of the equivalent relplanes 
perpendicular to the z axis and crossing the perovskite 
Bragg reflections. The factors of the kind sin 2 ma are 
typical diffuse factors (see part I) leading to the 
vanishing of diffuse scattering in the formal limiting 
case A --- 0. Quite similarly the expressions for IYZ(x) 
and I= (x )  can be obtained. 

As a result we obtained three mutually perpen- 
dicular families of diffuse replanes crossing Bragg 
reflections. It should be noted that these are the same 
relplanes as in shifting perovskite (see part III) but 
now B atoms do not participate in the formation of 
these replanes [fa is not present in formula (16)]. Let 
us now consider the diffuse relrods, for example, 
IX(g). Using once again (8)-(11) we obtain: 

IX(x) = NyNz Eyy, ~=, exp - i  ~Y + a  (Ry- Ry,) 

x~fxf*x[(1-tanh 2 JX)/(1 

- 2  tanh J~ cos x ~ a +tanh / JX)] 

x [sin 2 nYA ~ cos 2 xXA y 
a 

- 2 cos(xY - xz) ~ sin xYA ~ 

x sin x~A ~ cos n~A y cos xxzl ~ 

+sin 2 xza ~' cos 2 xxa~]. (18) 

The first factor, 

NrN~ ~yy, ~zz, exp - i  xY + a  (Rr - Rr') 

determines the positions of the diffuse relrods parallel 
to the x axis crossing now not the Bragg reflections 
but the centres of the cells in the reciprocal lattice. 
It should be emphasized that the final square bracket 
in (18) becomes equal to zero at xr = z or, in other 
words, the intensity of the 'diagonal' relrods is equal 
to zero. In fact, this coincides with the extinction laws 
found in experiment [see, for example, Ishida & 
Honjo (1973) and Glazer & Megaw (1972)]. Quite 

similarly the expressions for IY(x) and IZ(~) can be 
obtained. 

As a result we obtained the following picture of 
the scattering as a whole. In relspace there exist the 
reduced Bragg reflections, three families of equidis- 
tant mutually perpendicular diffuse relplanes crossing 
Bragg reflections, three families of equidistant diffuse 
relrods crossing the centres of cells in relspace; 
'diagonal' relrods and diffuse background are absent. 

Diffuse scattering temperature behaviour without 
account being taken of structural distortions 

Examining the expressions for the intensity of the 
Bragg reflections (13), the diffuse relplanes (16) and 
the diffuse relrods (18) one can see that temperature 
is involved only in the JX, JY and jz parameters and 
therefore IBr(X) is completely temperature indepen- 
dent while for IxY(x) and I~(x) temperature depen- 
dence is determined only by factors of the following 
kind: 

1 - tanh 2 JX 
LX(T) = 1 - 2  tanh jx  cos xXa+tanh 2 jx. (19) 

Let us consider first the particular case when the 
'exchange' interactions (5) are equal to zero. Then 
the factors LX(T), LY(T) and LZ(T) become equal 
to unity and the whole picture of diffuse scattering 
in this case does not depend upon temperature. 

Up to now, despite the fact that in expression (5) 
the x, y and z indices at oscillation amplitudes A 
were kept, these amplitudes in different paratiltings 
have also been assumed to be equal owing to cubic 
symmetry, as j x=jy=jz .  Let us introduce the 
notation: 

Then for V >  0, i.e. for the tilting case, expression 
(18) may be rewritten in the form: 

1 - tanh 2 (To/T) 
LT(T)- 

1 - 2  tanh (To/T) cos xXa +tanh2 (To/T)' 
(21) 

whereas for V <  0, i.e. for the antitilting case: 

1 - t a n h  2 (T0/T) 
LX,(T) = 

1 + 2 tanh (To/T) cos x~a + tanh 2 (To/T) 

(22) 

The dependence of (21) upon x x at various tem- 
peratures is shown in Fig. 3. The dependence of (22) 
is depicted by the same curve, displaced, however, 
by 7r/a along the x x axis (see also Fig. 3 in part I). 

Thus Fig. 3 clearly shows the temperature 
behaviour of the diffuse relrods. At infinitely high 
temperature the relrods are uniform. As temperature 
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decreases a gradual pumping over of intensity from 
relrods into separate relpoints takes place so that 
when the temperature approaches zero the intensity 
in these relpoints becomes 6-function-shaped. 

In other words, as temperature decreases the diffuse 
peaks which appear gradually transform into well- 
shaped superstructure reflections. 

Using the usual notations one can say that at high 
temperatures there exist diffuse relrods of three 
families: 

h+½, k+½, L h # k  

h+½, K, I+½ h # l  (23) 

H, k+½, l+½, k # l  

where h, k, l are the cubic indices while H, K, L are 
arbitrary numbers. As temperature decreases the 
diffuse relrods concentrate into superstructure reflec- 
tions: 

(a) tilting case: 

h+½, h+½, l 

h+½, k 
h, k+½, 

(b) antitilting case: 

h+½, k+½, l+½ 

h # k  

l+½ h # l  (24) 

l+½ k # l  

h ¢ k ,  k# l ,  l#h .  (25) 

The temperature redistribution of intensity along 
diffuse relplanes UY(~), IY~(~) and Ux(~) can be 
similarly examined since it is directed by the same 
factors (19). 

To interpret the results obtained in terms of the 
phase transition theory let us introduce the following 
concept: order parameters (their physical meaning 
will be discussed below). 

r/~ = tanh I1=1, n, = tanh I1~1, n. = tanh I J~[. 

(26) 

(Fig. 4 shows the temperature behaviour of these 
parameters.) Let us introduce also the concept 'spon- 
taneous tilting' ( antitilting): 

r/x Ax, rbAY, r/z A~. (27) 

Then the crystal behaviour is described in the follow- 

-SJ  

T 

tk-- J, tk.-dJ. 

Fig. 3. The temperature redistribution of intensity along diffuse 
relrods and the formation of superstructure reflections. 

ing way. At infinitely high temperature the X ions 
oscillate relative to their average equilibrium posi- 
tions located precisely at the centre of a face. As 
temperature decreases a gradual displacement of the 
average position and a gradual freezing of the oscilla- 
tions take place so that at zero temperature the X 
ions are frozen in positions displaced from a face 
centre by the values za x = A Y = A z. 

In other words, the concept paratilting is valid only 
at infinitely high temperature. At any finite tem- 
perature there always exist the non-zero values of the 
spontaneous tiltings (or antitiltings). Strictly speaking 
in such a crystal any phase transition is absent and 
any such concept as order parameter in the traditional 
sense is also absent, i.e. the magnitude which is equal 
to zero above the transition point and is not equal to 
zero below it. However, at the same time it is known 
that in real crystals from the tilting region phase 
transitions with well defined transition points occur. 
These are KMnF3, SrTiO3, NaNbO3, C s P b C I  3 and 
many others. This inconsistency arises because we 
have not yet taken into account the real lattice distor- 
tions accompanying the appearance of spontaneous 
tilting (or antitilting). 

The coupling of spontaneous tilting and 
structural distortions 

Up to now we have tacitly assumed that temperature 
is involved only in the 'exchange' interaction par- 
ameters jx, jy and jz which are equal in value. The 
real situation is quite different and real displacements 
of all ions in a crystal, not only those participating 
in tilting, are the main reason for this. 

Let us return to Fig. 2 and remind ourselves that 
the unit-cell sizes are determined by the contacts of 
the B ion at the centre of a cell with the X ions 1, 
1', 2, 2', 3, 3'. Let us assume that at a certain tem- 
perature there exists spontaneous z tilting, i.e. 1, 1', 
2, 2' ions are displaced in the xy plane of their own 
faces by the value r/zA z on the average. Then gaps 
between the B ion and the 1, 1', 2, 2' ions should 
appear and hence the unit cell as a whole should 
contract in the xy plane since A and X ions do not 
contact each other. It is obvious that the z size of a 
cell does not change so that 

ax = ay= a(1-  t' ~Tz) (28) 

az = a, (29) 

t 

Fig. 4. The temperature behaviour of the order parameter. 
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where t' is a small positive magnitude (1'= 0, unlike 
the shifting case). Because of all these distortions of 
a lattice (every face of a lattice is contracted) all gaps 
between ions also vary and consequently the ion 
oscillation amplitudes vary as well: 

/i x = /i Y = /i ( 1 -  t r/z ) (30) 

/iz = /i (1-1~qz), (3t) 

where t and I are some positive magnitudes, A is the 
oscillation amplitude of the X ions at T = oo (in a 
cubic phase). From cubic symmetry it is clear that 
quite similar considerations are valid for the x and 
y tiltings (antitiltings) so that: 

ax = a(1 - t'r/y)(1 - t'r/z) 

ay = a ( 1 -  t 'r /x)(1- t' rlz) (32) 

az= a ( 1 -  t' r lx)(1- t' rly) 

/ix =/ i (1  -/r/x)(1 - tr/y)(1 - tr/z) 

A Y = A ( 1 - t r l x ) ( 1 - h l y ) ( 1 - t r l z )  (33) 

/i z = A (1 - tTqx)( 1 - tr/y) (1 - lrlz). 

As a result the equations for the order parameters 
vary as well: 

r / x= tanh[~(1 -1r l x )2 (1 - t r / y )2 (1 - t r l~ )  2] 

[T° (1-trlx)2(1-1r/y)2(1 tr/z) 2] r/r = tanh -~- - (34) 

r/z = t a n h  T(l-tr/x)2(l-tnr)2(l-Ir/z)2, 
where 

To = L ~ / i  2 . (35) 

Temperature behaviour of a crystal with structural 
distortions 

Now the problem of the crystal temperature 
behaviour becomes more complicated but at the same 
time it becomes far more realistic. Briefly, the further 
programme involves the following. Firstly, for any 
crystal taken from the tilting region (i.e. for concrete 
values of the ionic radii) one should calculate the 
values of the l, t and t' parameters (the A-problem 
- see part III). Secondly, at these values of l and t 
one should discover all possible solutions of the sys- 
tem (34) and substitute all the found values of r/x, r/y 
and r/z into equations (33). Thirdly, for all tem- 
perature values one should choose solutions lowest 
in energy: 

E---[l"lx(AX)2+Tly(Ay)2+r/z(/iz)2].  (36) 

Substituting one for each temperature set of r/x, r/y, 

r/z, A X, A X, A Z values found in such a way into the 
intensity expression for diffuse relrods (18) and 
diffuse relplanes (16) one will find the temperature 
behaviour of diffuse scattering. If necessary one can 
also find the temperature dependence of the Bragg 
reflections by substituting A x, AY and /iz into (13). 
The temperature behaviour of the lattice parameters 
can be found by r/x, r/y and r/z substitution into (32). 

The first part of the programme (the A-problem) 
appears to be a rather complicated independent prob- 
lem. In the present paper we shall not go into details 
of this problem, which in many aspects is analogous 
to the A-problem in the shifting case in part III. We 
shall merely give without calculations the results 
necessary for further analysis. 

Depending upon the ionic radii the oscillations of 
the X ions may occur in several regimes. The two 
following regimes are actually found here. 

First regime: at high temperatures X ions oscillate 
so that they meet A ions from their own cell and as 
temperature decreases they continue to meet A ions 
freezing in such positions. This regime corresponds 
to t = 1 and to l and t' values in the interval from 0 
to 1 -x /2 /2~0 .293 .  The amplitude of the X-ion 
oscillations, l and t' values are given by formulas 
( I '=0) :  

A 1 -  2,,~z 2 - 1  , / 3 - 2 r 2 -  2 ~ r  2 - 1  
- - -  l = 1  
a 2 ' 2 ( 1 -  2x~z2-1) ' 

(37) 
v /3-  2 ~ - 2 + ~  1 

t '=  1 
2 

where r is the tolerance factor varying in the tilting 
region from 1 to v~ /2=0 .707  (see part II), ~'= 
(rA + I)/[V/2(rB+ I)]. 

Second regime: at high temperatures X ions oscil- 
late so that they meet X ions from neighbouring cells, 
as temperature decreases they continue to meet X 
ions from neighbouring cells participating in one of 
the tiltings (antitiltings) but the same X ions meet A 
ions from their own cells participating in the other 
tiltings (antitiltings). This regime corresponds to t 
values from 1 to 0.116, I values from 0.116 to 0.293, 
t' values from 0.034 to 0.293 according to the for- 
mulas: 

1 + 4 2 ( r 8 +  1)2-1 A rB t '= 1 
a 2(rB + 1)' 2(rn + 1) 

x/2(rB + 1)2- 1 
/ = 1  , (38) 

2rB 

rn + 1 -x/2~-2(r8 + 1)2-1 
t = l -  

rB 

The solid curve in Fig. 5 yields the equation: 

(rA+l)  2= ( r B + l ) 2 + l ,  (39) 
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and serves as the boundary between these two 
regimes. 

Solution of  system (34) 

In the general case system (34) has four types of 
solutions: 

(1) r/1 r/1 r/1 symmetrical 
(2) rl~r/~r/2(r/2> rl~) pseudotetragonal 
(3) 773 773 r/~(r/3 > r/i) pseudoorthorhombic 
(4) r/4r/~r/g general (low-symmetrical) 

The second and the third solutions would be called 
merely tetragonal and orthorhombic if r/~ and r/~ were 
equal to zero. However, the very structure of equation 
(34) does not allow zero values for the 77 parameters 
(contrary to the shifting case - see part III). As will 
be seen later on the names 'pseudotetragonal'  and 
'pseudoorthorhomic'  possess profound physical 
meaning. For the same reason the first solutions (sym- 
metrical) should be called pseudocubic at high tem- 
peratures and pseudorhombohedral at low tem- 
peratures. Forestalling the calculations one can say 
that the fourth solution (general) never becomes 
minimal in energy (36) and thus we shall not regard 
it henceforth. 

For the first solution the system is reduced to one 
equation: 

~l = t a n h  T (1 - ln02(1  - tn~)4 . (40) 

The energy of the first solution is: 

E,=-3(1-hh)E(1-t,h)4~7, (41) 

(hereafter the irrelevant constant A 2 is omitted). 
For the pseudotetragonal solution the system (34) 

is reduced to two equations: 

*l~=tanh[~(1-hT~)E(1-t,l~)2(1-t,h) 2] 

r/2 = tanh [ - ~  (1 - h/2)2(1- tr/~)4]. 

(42) 

0 r8 

Fig. 5. A schematic division of the tilting region I I: (1) perovskites 
with one transition; (3) perovskites with three transitions; (0) 
perovskites without transitions. 

The energy of the pseudotetragonal solution is: 

E2 = - (1  - 1n2)2(1 - tn~)4rh 
-2(1-hs~)2(1-trl~)2(1-n72)2~7~. (43) 

For the pseudoorthorhombic solution the system (34) 
is reduced to two equations: 

rl3=tanh[~(1-1~13)2(1-t~3)2(1-trl'3) 2] 
(44) 

r/~ = tanh [ - ~  (1 -/r/~)2(1 - tr/3)4]. 

The energy of the pseudoorthorhombic solution is: 

E3 = - 2( 1 - lr/3)2(1 - tr/3)2(1 - tr/;)2r/~ 

- ( 1  - h/3)2(1 - lr/~)4r/3. (45) 

Numerical  calculations 

The analysis of the numerical calculations of 
equations (40), (42) and (44) at various values of the 
parameters l and t gives the following conclusions. 
The symmetric solution exists over the whole 
temperature region. Pseudotetragonal and pseudo- 
orthorhombic solutions may exist in the restricted 
temperature intervals (T~, 7"1) and (T3, T~), respect- 
ively, which always overlap so that 7"3 < T~ < T~ < 7"1. 

The hatched area in Fig. 6 corresponds to the values 
of the parameters l and t at which pseudotetragonal 
and pseudoorthorhombic solutions may exist. 

Energy-minimization analysis gives the following 
conclusions. First, in the existence intervals of the 
pseudotetragonal and pseudoorthorhomic solutions 
the symmetrical solution is always disadvantageous 
while the relative advantage of the pseudotetragonal 
and pseudoorthorhombic solutions is exchanged at 
some point T2 between T] and T~. Furthermore, at 
t ~ 1 the values of T3 and T~ go to zero. Fig. 7 shows 
in outline the dependence of 7"1, 7"2 and T~ upon the 

0 aus n7o7 t ~'t 

Fig. 6. The origin of the regimes with one and three transitions in 
(/, t) parameter space. 

I 

Fig. 7. The dependence of the phase-transition temperatures upon 
the t parameter. 
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value of the t parameter at any taken value of I from 
the hatched area in Fig. 6. 

Let us return once again to Fig. 5, the dotted curve 
in which exactly corresponds to the dotted curve in 
Fig. 6. Now the meaning of this curve in Fig. 5 
becomes clear. It is the boundary above which in the 
region of the second regime the crystals undergo three 
phase transitions whereas below this boundary the 
crystals no longer undergo any transitions. It is also 
clear now that the crystals with one transition corre- 
spond to the first regime. 

Let us consider in detail two typical cases - one 
from the region with one transition and the other 
from the region with three transitions in Fig. 5. It is 
quite sufficient to take, for example, r = 0.95 for the 
first case and rB = 0.8 and rA = 0"85 for the second. 
The results of the numerical calculations for these 
cases are shown in Fig. 8: for a crystal with one 
transition - on the left; for a crystal with three transi- 
tions - on the right. Fig. 8(a) shows the temperature 

T L T, ~T 

(a) 

ol T3"r ~ "r~ ]'~ T, T 

"r; "r, ! ~T; ~ ~ "r, Z 
" - . ~  I i ~ L I  i I I I 

" ~  ' ' ~! I I I 

7... t Ft~% i I i 
(b) I - - "  

d 4 
I ~.~.~- ..-----'S.~ 

TI ~ T~ "I"2 TI ~T 

(e) | 'l"~J"~' I 
I C.I . . . . . .  

Fig. 8. The temperature dependence of various physical charac- 
teristics of perovskites from the tilting region: (a) components 
of the order parameter; (b) energies of solutions; (c) lattice 
parameters; (d) superstructure reflection intensities; (e) tilting 
(antitilting) angles; left - crystal with one transition; right - 
crystal with three transitions. 

behaviour of the order parameters, Fig. 8(b) the 
energies, and Fig. 8(c) the lattice parameters. 

For the sake of comparison with experiment let us 
also calculate the temperature behaviour of the super- 
structure reflections determined in the main by a factor 
of the type (18). Without loss of generality let us 
confine ourselves to the tilting case, i.e. let us take 
V >  0 in (5). Then the superstructure reflections are 
described by expression (23) so that one should sub- 
stitute the calculated values of r/x, % and ~Tz into the 
expressions of type (18) and also put cos~Xa = 
cos xYa = cos ~Za = 1. The results of the calculation 
are shown in Fig. 8(d). The behaviour of the super- 
structure reflections in a crystal with antitilting is just 
the same but the positions of the reflections are deter- 
mined by expression (24). 

It is convenient to calculate the temperature 
behaviour of the octahedra rotation angles often dis- 
cussed in experimental papers [see, for example, 
Glazer & Megaw (1972), Clarke (1977), and Ahtee, 
Glazer & Megaw (1972)]. The notations @ for tilting 
and ~p for antitilting angles are often used (see, for 
example, Alexandrov et al., 1981). Then in our 
designations one obtains: 

Ox = tan-  1 , @r = tan-  ~ , 
k a y /  \ az / 

(46) 

ql~ = tan -1 - -  
\ ax / 

(similarly for ~). Fig. 8(e) shows the results of the 
calculations. 

Comparison with experiment and discussion 

Let us now depict as a whole the phenomenon occur- 
ring in a crystal with tilting ( V > 0 )  or antitilting 
(v<0). 

At high temperatures the crystal is in a pseudocubic 
state with small (but not zero) equal values of all 
three spontaneous tiltings and with large amplitudes 
of X-ion oscillations. If the crystal corresponds to 
the first regime (t = 1) according to the values of the 
ionic radii so, as temperature decreases, it undergoes 
only one phase transition of second order at T1 into 
a tetragonal phase. Just below T1 one of the spon- 
taneous tiltings increases sharply while the other two 
sharply decrease (Fig. 8a). With further temperature 
decrease one of the spontaneous tiltings smoothly 
increases to a finite value at T = 0  while the other 
two go to zero at T = 0 .  The behaviour of the 
octahedra rotation angles is quite similar (Fig. 8e). 
At T = 0 the phase becomes genuinely tetragonal. The 
diffuse scattering undergoes the following evolution. 
At high temperatures there exist three families of 
diffuse relrods and three families of diffuse replanes 
with weakly pronounced peaks in the relpoints of the 
future superstructure reflections. As temperature 
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decreases the gradual redistribution of intensity along 
diffuse relrods and relplanes takes place. The weak 
peaks gradually grow while the 'in-between' intensity 
gradually decreases. At the transition temperature the 
peaks of one of the families sharply increase while 
the other two sharply decrease so that the non-unifor- 
mity of one family is sharpened while the uniformity 
of the others is partially restored. With further tem- 
perature decrease the non-uniformity of the intensity 
gradually increases and at T = 0  only well pro- 
nounced superstructure reflections are left for diffuse 
relrods. This behaviour is illustrated by the left-hand 
side of Fig. 8(d). A similar evolution takes place for 
relplanes. 

If according to the ionic radii the crystal corre- 
sponds to the region with three phase transitions 
(t # 1), so, qualitatively, a similar but more compli- 
cated phenomenon occurs in it (see the right-hand 
side of Fig. 8d). As temperature decreases at T~ the 
phase transition of second order from pseudocubic 
into pseudotetragonal first takes place, then at 7"2 the 
crystal undergoes the phase transition of first order 
to the pseudoorthorhombic phase and finally at 7"3 it 
undergoes the phase transition of second order to the 
pseudorhombohedral phase. The behaviour of the 
order parameters, lattice constants, angles of 
octahedra rotations and superstructure reflections 
may be traced in Fig. 8(a)-(e) (right-hand side). 

Strictly speaking all our considerations are appli- 
cable only to crystals in which either tilting or anti- 
tilting takes place. Apparently RbMnC13, TIMnCI3 
and SrTiO3 belong to such a kind and also NaxWO3, 
the only crystal with three tilting transitions already 
observed (see, for example, Clarke, 1977). However, 
in a great number of crystals investigated, including 
KMnF3 and NaNbO3, the phenomena caused both 
by tilting and antitilting are simultaneously present. 
For a description of such crystals the theory should 
be developed in a rather simple way, namely, instead 
of one parameter of 'exchange' interaction V in (5) 
taken in the approximation of the nearest planes one 
should introduce at least one more interaction par- 
ameter for the next-nearest-planes interaction, for 
example, so that these two parameters could compete 
with each other ( V~ > 0; V2 < 0 or V~ < 0; V2 < 0). The 
difficulties of comparison with experiment arises 
because diffuse-scattering data are only available for 
such crystals. For example, the fragmentary tem- 
perature evolution of diffuse scattering has only been 
traced in NaNbO3 by Denoyer et al. (1971) and only 
one more picture of diffuse scattering at only one 
temperature has been obtained for KMnF3 by Comes 
et al. (1971). 

Nevertheless, the majority of the characteristic 
features of crystal behaviour obtained in our theory 
are corroborated by the results of experiments carried 
out just on these crystals. The temperature behaviour 
of the tilting and antitilting superstructure reflections 

in NaNbO3 shown in Fig. l(b) and Fig. 6 of Comes 
et al. (1971) and by Hidaka, Ohama, Okazaki, 
Sakashita & Yamakawa (1975) for KMnF3 are the 
most vivid examples of this kind. 

Let us consider briefly the concepts 'tilting' and 
'antitilting angles'. From the analysis of geometrical 
distortions of the lattice at tilting carried out in detail 
one can see that the octahedra rotations in the elemen- 
tary z tilting inevitably involve deformation of the 
octahedra in the x y  plane so that this is no longer 
pure rotation although one can keep such characteris- 
tics as the tilting angle @z. Depicting two neighbouring 
octahedra being turned by ~bz in different directions 
one can see the disorientation of the octahedra axes 
and simply because of this visual fact the notion 
'tilting' appeared. As we have seen above all our 
considerations do not need such an approach nor do 
they need the very concept 'tilting', but we use such 
a concept if only because it is deep-rooted in the 
literature. The language of tilting and antitilting 
angles is quite admissable for a crystal with three 
tiltings (antitiltings) of different orientations and even 
for a crystal with tiltings and antitiltings occurring 
simultaneously. 

Remarks on order parameter 

It is very likely that the main difficulty for the com- 
parison with experiment is connected with the fact 
that in the description of tilting crystals many authors 
urgently strive to use the traditional concept of order 
parameter usually understood as the magnitude 
which is equal to zero on one side of the phase 
transition and is non-zero on the other. As we have 
already seen the magnitudes ~% determined by 
equations (34) and playing the role of order par- 
ameters never equal zero even above the highest 
transition temperature. That is why we have called 
the highest phase the pseudocubic ,  but not merely 
cubic. The same conclusion was drawn previously by 
Rousseau (1979), Bulou, Nouet et al. (1980) and 
Bulou, Ridou et al. (1980). The widely held belief 
that the order parameter should necessarily grow as 
temperature decreases is also inapplicable to the mag- 
nitudes r/x, ~y and r/z. If one adheres to these tradi- 
tional concepts it is difficult to give a consistent 
description of the phenomena occurring in a perov- 
skite from the tilting region and consequently to inter- 
pret the experimental data. Such difficulties are 
clearly seen in many papers by various authors. The 
temperature dependence of tilting angle, presented 
by Clarke (1977), may serve as an example. In reality 
~b values differ from zero even above the highest 
transition temperature (one has to carry out thorough 
measurements of ~, above that temperature) whereas 
as temperature decreases below the interval presented 
by Clarke the tilting angle tends to decrease (one has 
to carry out these measurements as well and not 
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confine oneself to the restricted temperature interval). 
Ahtee, Glazer & Megaw (1972) had come to the same 
conclusion regarding the insufficiency of the tradi- 
tional concept of order parameter in a description of 
tilting crystals (their magnitude A is analogous to our 
spontaneous tilting r/A) and who said directly that 
"the name 'order parameter' is unfortunate when 
applied to displacive transitions such as those studied 
here . . . .  We prefer to call them 'displacive par- 
ameters'." 

It should be reiterated (as in part III) that although 
the whole phenomenon occurring in tilting perov- 
skites is usually described by the set of displacements 
of all atoms nevertheless it is quite sufficient for a 
complete description to know only three magnitudes 
r/,, determined by equations (34), which is an indubit- 
able merit of our theory. The name 'order parameter' 
may be kept for r/,~ remarking, however, that it differs 
from the traditional understanding of order parameter 
as 'zero-non-zero' magnitude. There are no principle 
obstacles for the description of the whole 
phenomenon occurring in crystals from the tilting 
region in these terms since all the experimentally 
measurable quantities could be calculated through r/~ 
as is shown in Fig. 8. 

Although there have been extensive investigations 
of numerous 'tilting' perovskites [see, for example: 
Hidaka & Ono (1977) for NaNiF3; Ahtee, Ahtee, 
Glazer & Hewat (1976) and Ahtee, Glazer & Hewat 
(1978) for SrZrO3; Ahtee, Kurki-Suonio, Vahvaselka, 
Hewat, Harada & Hirotsu (1980) for CsPbC13; 
Rousseau (1979), Bulou, Novet et al. (1980), and 
Ridou et al. (1981) for RbCaF3; Bulou, Ridou et al. 
(1980) for KCaF3; Hirotsu, Harada, Iizumi & Gesi 
(1974) for CsPbBr3; Plesko, Kind & Roos (1978) for 
CsPbC13 and RbCdC13; and others], nevertheless for 
a successful development of the theory and for a 
clarification of our representations on the mechanism 
of immanent chaotization far wider and more 
thorough measurements of the main chararacteristics 
of perovskites over a wide temperature interval (the 
precise measurements of lattice parameters and the 
temperature dependence of the superstructure reflec- 
tions are the most important) are needed, as are 
studies of the temperature evolution of diffuse scatter- 
ing in the mono-Laue method. 

We hope that the proposed theory will help the 
experimental investigations to be carded out more 
purposefully than before. At present there are very 
few experimental data on diffuse scattering, while the 
whole phenomenon deserves far more attention in 
many classes of crystal structures. 
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